Master of Science (Mathematics) Third Semester Main Examination, Dec-2020 Advanced Numerical Analysis-I (MSM-304T)

Max Marks 85

Note : Attempt all questions. Question no. 1 to Q. no. 5 has two parts. Part A is 10 marks and part B is 7 marks.

Q.1	(a) Using the method of linear interpolation find y at $x = 0.5$ and $x = 0.75$ Given the following table-							
	x y	0 2	1 3		2 12	5 147		
	(b) Explain Herm(a) Fit the linear	ite interpolatior spline to the fol	n. lowing data-	OR				
	x y Estimate the	1 4 value of x = 2, 4	3 5.5 1, 7	6 7	8 9.5			
	(b) Explain quad	ratic spline inter	rpolation.					
Q.2	 (a) Find the value of y at x=0 Given some set of values (-2, 5) (1, 7) (3, 11) (7, 34) ? by Lagranges interpolation formula. (b) Write three application of Newtonis Bivariat interpolation polynomial. OR (a) Fit a straight line for the following data- 							
	X V	2 3	4 7	6 9	8 11	10 17		
	(b) Explain discre	et and continou	ıs data.					
Q.3	(a) Prove tha n th Legendre polynomial P _n is given by – P _n (x) = $\frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$							
	(b) Write the formula for chebyshev polynomial.							
	(a) Explain Gram(b) Prove shifted	– Schmidt orth chebyshev first	ogonalization kind.	UK				
Q.4	(a) Prove that uniform approximation by polynomial when sets are not compact.(b) Explain Rational approximation.OR							
	(a) What do you (b) Evaluate Δ^n (mean by choice e ^{ax+b})	e of methods.					

Q.5 (a) Find the first & second derivative of f(x) at x = 1.5

х	1.5	2.0	2.5	3.0	3.5	4.0
у	3.375	7	13.625	24	38.875	59

(b) Explain Non – uniform nodal points.

OR

(a) Find the first derivatie at x = 4.5 for the following data –

Х	2	4	6	8	17
у	3	8	8	11	13

(b) Show that $E \equiv 1 + \Delta$ or $\Delta \equiv E-1$ Also write their usual meaning.

Enrollment No.....

Master of Science (Mathematics) Third Semester Main Examination, Dec-2020 Advanced Special function-I (MSM302T)

Time: 3:00 Hrs

Max Marks 85

Note: Attempt all questions. Each question has two parts. Part A is 7 marks and part B is 10 marks.

Q.1 (a) Prove that $\boxed{1} = 1$ and $\boxed{n+1} = n \boxed{n}$ and $\boxed{\frac{1}{2}} = \sqrt{\pi}$ (b) State and Prove Legendre's duplication formula.

OR

(a) Prove that $\beta(m,n) = \frac{\sqrt{m}\sqrt{n}}{\sqrt{m+n}}$

(b) State and Prove Gauss Multiplication theorem.

Q.2 (a) Define hyper geometric function.

(b) Prove that
$$_{2}f_{1}\left(\frac{a,b;z}{c}\right) = (1-z)^{-a} _{2}f_{1}\left(\frac{a,c-b}{c};\frac{z}{z-1}\right)$$
 OR

- (a) Find the inverse of $x = \begin{bmatrix} 2 & 4 \\ 5 & -1 \end{bmatrix}$ Hence solve the simultaneous equations. 2x+4y=1
 - 5x-y=8

(b) Define simple transformation and quadratic transformation. Also show that f(x) is a quasi concave (quasi convex) on T_{++} and $T_{--}(T_{+-}$ and $T_{-+})$

- Q.3 (a) Define contiguous function.(b) State and prove Dixon's theorem.
- OR
- (a) State and prove Whipple's theorem.

- (b) State and prove Ramanujan's theorem.
- Q.4 (a) Prove that (i) $J'n(x) = J_{n-1}(x) - J_{n+1}(x)$ (ii) $xJ_n'(x) = xJ_{n-1}(x) - nJ_n(x)$
 - (b) Define Bessel's differential equation.
 - (a) Show that

$$\mathbf{J}_{3/2}(\mathbf{x}) = \sqrt{\frac{2}{\pi}} \left(\frac{\sin x}{x} - \cos x \right)$$

- (b) Show that Bessel functions Jn(x) are linked together by the relation $e^{\left(\frac{x}{2}\right)(t-\frac{1}{t})} = \sum_{n=-\infty}^{\infty} Jn(x)t^{n}$
- Q.5 (a) Express $f(x) = x^4 + 2x^3 + 2x^2 x 2$ in terms of Legendre's polynomial. (b) Obtain Rodrigue's formula for Legendra polynomial.

OR

OR

- (a) Prove that $\int_{-1}^{1} p_n(x) dx = 0$ if $n \ge 1$
- (b) If p_n is a Legendre's polynomial of degree n then to prove the relation $(2n+1)xp_n = (n+1)p_{n+1} + np_{n-1}$

Enrollment No.....

Master of Science (Mathematics) Third Semester Main Examination, Dec-2020 Functional Analysis-I (MSM-301T)

Time: 3:00 Hrs

Max Marks 85

Note : Attempt all questions. Question no. 1 to Q. no.4 has two parts. Part A is 10 marks and part B is 7 marks. Q.5 is of 17 marks.

- Q.1 (a) Let n be a Normed linear space and let x, $y \in N$ then $||x|| - ||y|| \le ||x - y||$
 - (b) Define Normed linear spaces. What do you mean by complex normed linear space.

OR

- (c) Show that the real linear space R and the complex linear space C are Banach spaces under the norm ||x|| = |x|, $x \in c(R)$
- (d) Define Banach space with example.

Q.2 (a) Prove that \mathbb{R}^n is an nls (normed linear space) with the following norms.

$$\|x\|_1 = \sum_{i=1}^{n} |x_i|$$

(b) State Riesz lemma.

OR

(a) What do you mean by finite dimensional normed spaces and subspaces.

- (b) Explain linear operator.
- Q.3 (a) Prove that if a linear operator is continuous then it is bounded.(b) Define bounded linear operator with example.

OR

- (a) Define linear functional with two example.
- (b) Define functional with example.

- Q.4 (a) What is linear operator? What is difference between a linear operator and linear transformation?
 - (b) Explain dual spaces with example.

OR

- (c) Prove that every finite dimension normed linear space is a Banach space.
- (d) Explain Banach space.
- (e) Q.5 Write short note on any three-
- (f) i) Complex Vector Space
- (g) ii) Any two application of bounded linear functional on c [a, b]
- (h) iii) Quotient Space
- (i) iv) Compactness
- (j) v) Normed Space

Enrollment No.....

Master of Science (Mathematics) Third Semester Main Examination, Dec-2020 Integration Theory (MSM309T)

Time: 3:00 Hrs

Max Marks 85

Note : 1.Attempt all questions. 2. Question No 1 to Question No 4 has 2 parts (Parts A is 10 Marks & Part B 7 Marks. Question five is of 17 Marks.

Q.1 (a) Prove that every finite measure is semi-finite.(b) Define measure with example.

OR

(a) If F_1 and F_2 are measure function then the function F^* and F_* are measurable.

(b) Define sigma finite set with example.

Q.2 (a) Show that the function ψ defined on R by.

$$\Psi(x) = \begin{cases} x+5 & \text{if } x < -1 \\ 2 & \text{if } -1 \le x < 0 \\ 2 & \text{if } x < 0 \end{cases}$$

(x^2 if $x \ge 0$ (b) What do you mean by measurable function.

OR

- (a) Show that constant function with a measurable domain in measurable.
- (b) Define step function with example.
- Q.3 (a) If F is measurable; g is Integrable and $|f| \le |g|$ then f is integrable.
 - (b) Define characteristic function; what do you mean by indicator.

OR

(a) A mean fundamental sequence $\{f_n\}$ of integrable function is fundamental is measure.

- (b) Define mean fundamental.
- Q.4 (a) What are signed measure? Explain with example.
 - (b) State Hahn decomposition theorem.
 - OR
 - (a) What do you mean by mutually singular measure. Explain.
 - (b) State Jordan decomposition theorem.
- Q.5 State and prove Radon Nykodym theorem.

OR State and prove Lebesgue decomposition theorem.

Enrollment No.....

Master of Science (Mathematics) Third Semester Main Examination, Dec-2020 Theory of Linear Operators-I (MSM-303T) Max Marks 85

Time: 3:00 HrsMax Marks 85Note : Attempt all questions. Question no. 1 to Q. no.5 has two parts. Part A is 10 marksand part B is 7 marks.

- Q.1 (a) Prove that Normal linear space is a linear matic space with respect natural metric defined by d(x, y) = || y x ||
 - (b) Define closed operators with example.

OR

- (e) Let X be a normal space and T:X \rightarrow X be a compact lenear operator, If dimX = ∞ then show that 0 $\epsilon \sigma$ (T)
- (f) What do you mean by continuous and residual spectra.
- Q.2 (a) Write spectral properties of bounded linear operator.
 - (b) What do you mean by spectrum; Explain with one-example.

OR

- (a) State and prove spectral mapping theorem for polynomial.
- (b) Write only three properties of resolvent.
- Q.3 (a) Let X be complex Banach division algebra, then prove that X is isomorphic to c.(b) Write three properties of Banach Algebra.

OR

- (a) If X be a Banach Algebra and let x ϵ X the r (x) = $\lim_{x\to\infty} ||x^n||^{1/n}$
- (b) If X is Banach Algebra and x ϵ X then σ (x) $\neq \emptyset$
- Q.4 (a) Prove that bounded linear operator o finite rank is compact.
 - (b) Define compact operator with example.
 - OR
 - (k) If T : $L_2[a, b] \rightarrow L_2[a, b]$ be an operator with separable kernel then T is compact.
 - (1) State compact integral operator.
- Q.5 (a) Prove that $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ where x, y belongs to Hilbert space H.

(b) Write any three spectral properties of compact linear operator.

OR

- (a) Prove that every linear space X has Hamel Base.
- (b) Define normal linear space with example.